

### JAWAHARLAL NEHRUTECHNOLOGICALUNIVERSITY: KAKINADA

### KAKINADA-533003, Andhra Pradesh, India

R-16 Syllabus for EEE.JNTUK

| II Year-I Semester |          | L | T | P | С |
|--------------------|----------|---|---|---|---|
|                    |          | 4 | 0 | 0 | 3 |
|                    | <u> </u> |   |   | • |   |

# **ELECTRICAL CIRCUIT ANALYSIS-II (R1621021)**

<u>Prerequisite Course:</u> Basic laws in circuit analysis, linear algebra, matrix analysis and complex calculus.

# **Course Description and Objectives:**

This course aims at study of three phase systems, transient analysis, network synthesis and Fourier analysis for the future study and analysis of power systems.

# **Objectives:**

- 1. To study the concepts of balanced three-phase circuits.
- 2. To study the concepts of unbalanced three-phase circuits.
- 3. To study the transient behavior of electrical networks with DC, pulse and AC excitations.
- 4. To study the performance of a network based on input and output excitation/response.
- 5. To understand the realization of electrical network function into electrical equivalent passive elements.
- 6. To understand the application of Fourier series and Fourier transforms for analysis of electrical circuits.

# **Course Outcomes:**

Upon the course, the student will be able to achieve the following outcomes.

| Cos | Course Outcomes                                                                         | POs |
|-----|-----------------------------------------------------------------------------------------|-----|
| 1   | Solve three- phase circuits under balanced condition.                                   | 3   |
| 2   | Solve three- phase circuits under unbalanced condition.                                 | 3   |
| 3   | Find out transient response of electrical networks with different types of excitations. | 3   |
| 4   | Estimate the different types of two port network parameters.                            | 5   |
| 5   | Represent electrical equivalent network for a given network transfer function.          | 4   |
| 6   | Extract different harmonics components from the response of an electrical network.      | 4   |

### **Syllabus:**

#### **UNIT I:**

#### **Balanced Three phase circuits**

Phase sequence- star and delta connection - relation between line and phase voltages and currents in balanced systems - analysis of balanced three phase circuits - measurement of active and reactive power in balanced three phase systems.

### **UNIT II:**

#### **Unbalanced Three phase circuits**

Analysis of three phase unbalanced circuits: Loop method – Star-Delta transformation technique, Two wattmeter methods for measurement of three phase power.

### **UNIT III:**

#### Transient Analysis in DC and AC circuits

Transient response of R-L, R-C, R-L-C circuits for DC and AC excitations, Solution using differential equations and Laplace transforms.



# JAWAHARLAL NEHRUTECHNOLOGICALUNIVERSITY: KAKINADA

# KAKINADA-533003, Andhra Pradesh, India

R-16 Syllabus for EEE.JNTUK

#### **UNIT IV:**

#### **Two Port Networks**

Two port network parameters -Z, Y, ABCD and hybrid parameters and their relations, Cascaded networks - poles and zeros of network functions.

### **UNIT V:**

# **Network synthesis**

Positive real function - basic synthesis procedure - LC immittance functions - RC impedance functions and RL admittance function - RL impedance function and RC admittance function - Foster and Cauer methods.

### **UNIT VI:**

# Fourier analysis and Transforms

Fourier theorem- Trigonometric form and exponential form of Fourier series, Conditions of symmetry- line spectra and phase angle spectra, Analysis of electrical circuits to non sinusoidal periodic waveforms. Fourier integrals and Fourier transforms – properties of Fourier transforms and application to electrical circuits.

### **TEXT BOOKS:**

- 1. Engineering Circuit Analysis by William Hayt and Jack E.Kemmerley, Mc Graw Hill Company, 6th edition.
- 2. Network synthesis: Van Valkenburg; Prentice-Hall of India Private Ltd.

# **REFERENCE BOOKS:**

- 1. Fundamentals of Electrical Circuits by Charles K.Alexander and Mathew N.O.Sadiku, McGraw Hill Education (India)
- 2. Introduction to circuit analysis and design by TildonGlisson. Jr, Springer Publications.
- 3. Circuits by A.Bruce Carlson, Cengage Learning Publications
- 4. Network Theory Analysis and Synthesis by SmarajitGhosh, PHI publications
- 5. Networks and Systems by D. Roy Choudhury, New Age International publishers
- 6. Electric Circuits by David A. Bell, Oxford publications
- 7. Circuit Theory (Analysis and Synthesis) by A.Chakrabarthi, DhanpatRai&Co.